organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Marcin Palusiak,^a* Damian Plażuk^b and Janusz Zakrzewski^b

^aDepartment of Crystallography and Crystal Chemistry, University of Lodz, Pomorska 149/153, 90-236 Łódź, Poland, and ^bDepartment of Organic Chemistry, University of Łódź, Narutowicza 68, 90-136 Łódź, Poland

Correspondence e-mail: marcinp@uni.lodz.pl

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.031 wR factor = 0.065 Data-to-parameter ratio = 7.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-[3-Dicyanomethylene-2-(3-methoxybenzylidene)indan-1-ylidene]malononitrile

The title compound, $C_{23}H_{12}N_4O$, has potential application in non-linear optics; it has a chiral crystal structure despite the lack of a stereogenic centre. The crystal structure involves two intermolecular $C-H\cdots N$ hydrogen bonds.

The title compound, (I), was synthesized as part of a research

project based on new non-linear optical chromophores. It has been reported that organometallic derivatives of indane show second harmonic generation properties (Janowska *et al.*, 2003,

Comment

2006)

Received 14 June 2006 Accepted 19 June 2006

The molecular structure of (I) is shown in Fig. 1. The indan unit has an essentially planar geometry, with atom C1 displaced by 0.184 (3) Å from the plane formed by atoms C2– C9. The dihedral angle between the mean planes of the fivemembered ring (C1–C5) and the fused benzene (C3/C4/C6– C9) ring is 3.37 (15)°. The dicyanomethylene substituents are tilted from the attached ring. These substituents form angles of 12.82 (11) and 15.02 (11)° for C20–C22/N21/N22 and C50– C52/N51/N52, respectively, with the planar indane ring system. The planes of the benzene rings form a dihedral angle of 43.85 (14) Å. As expected, the non-H atoms of the methoxy group do not deviate significantly from the plane of the attached ring, the maximum deviation being 0.303 (3) Å for atom C120.

In the crystal structure, because of the lack of typical proton donors, classical hydrogen bonds are absent. There are, however, two $C-H\cdots N$ contacts which are slightly shorter than the corresponding sum of van der Waals radii (Table 1). In addition, there are short $CN\cdots CN$ contacts, which probably

© 2006 International Union of Crystallography

All rights reserved

compete with hydrogen bonds (Hori *et al.*,2000; Shabatina *et al.*, 1997; Kuribayashi *et al.*, 1999): N52···C52ⁱ = 3.064 (7) Å and N52···C51ⁱⁱ = 3.236 (7) Å [symmetry codes: (i) $\frac{1}{2} - x, -y, \frac{1}{2} + z$; (ii) x, y, 1 + z].

Interestingly, (I) crystallizes in a non-centrosymmetric space group despite the absence of any stereogenic centres. However, the molecule itself is chiral; steric hindrance precludes rotation about the formally single C10-C11 bond, and the formal double bond prevents any rotation about C1-C10. A chiral crystal structure is particularly important in the case of compounds having potential applications in non-linear optics.

Experimental

Compound (I) was obtained by refluxing equimolar amounts of 2methoxybenzaldehyde and 1,3-bis(dicyanomethylene)indan in acetic anhydride for 1 h, followed by evaporation to dryness and chromatography (silica gel/chloroform). Crystals were obtained by slow diffusion of hexane into a chloroform solution of (I) at room temperature.

Z = 4

 $D_x = 1.319 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

T = 293 (2) K

Needle, orange

 $R_{\rm int} = 0.130$

 $\theta_{\rm max} = 25^{\circ}$

 $0.5 \times 0.1 \times 0.1$ mm

3 standard reflections

every 150 reflections

intensity decay: 0.7%

Crystal data

$C_{23}H_{12}N_4O$
$M_r = 360.37$
Orthorhombic, P21212
a = 16.023 (7) Å
$b = 20.624 (5) \text{\AA}$
c = 5.493 (8) Å
V = 1815 (3) Å ³

Data collection

Rigaku AFC-5S diffractometer ω scans Absorption correction: none 8817 measured reflections 1873 independent reflections 962 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = \left[\exp\{5(\sin\theta/\lambda)^2\}\right] / \left[\sigma^2(F_o^2)\right]$
$R[F^2 > 2\sigma(F^2)] = 0.031$	$+ (0.01P)^{2}$] where
$wR(F^2) = 0.065$	$P = 0.33333F_{\rm o}^2 + 0.66667F_{\rm c}^2$
S = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
1873 reflections	$\Delta \rho_{\rm max} = 0.10 \ {\rm e} \ {\rm \AA}^{-3}$
254 parameters	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} C16-H16\cdots N22^{iii}\\ C8-H8\cdots N21^{iv} \end{array}$	0.93	2.73	3.646 (6)	170
	0.93	2.64	3.345 (6)	133

Symmetry codes: (iii) x, y, z - 1; (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H distances in the

View of the molecular structure of (I) (50% probability displacement ellipsoids)

range 0.93–0.98 Å. For methyl H atoms, $U_{iso}(H) = 1.5U_{eq}(C)$; for all other H atoms, $U_{iso}(H) = 1.2U_{eq}(C)$. In the absence of significant anomalous dispersion effects the Friedel pairs were merged. The higher than normal R_{int} value of 0.13 may be related to the fact that many of the data have weak intensity and the data/refined parameter ratio is lower than normal.

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1989); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *TEXSAN* (Molecular Structure Corporation, 1989); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON* and *WinGX* (Farrugia, 1999).

MP thanks the Rector of the University of Łódź for financial support (University Research grant No. 505/675 2006).

References

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hori, K., Kuribayashi, M. & Iimuro, M. (2000). Phys. Chem. Chem. Phys. 2, 2863–2868.
- Janowska, I., Zakrzewski, J., Nakatani, K., Delaire, J. A., Palusiak, M., Walak, M. & Scholl, H. (2003). J. Organomet. Chem. 675, 35–41.
- Janowska, I., Zakrzewski, J., Nakatani, K., Palusiak, M., Walak, M. & Scholl, H. (2006). J. Organomet. Chem. 691, 323–330.
- Kuribayashi, M. & Hori, K. (1999). Liq. Cryst. 17, 809-815.
- Molecular Structure Corporation (1989). MSC/AFC Diffractometer Control Software and TEXSAN (Version 5.0). MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Shabatina, T. I., Vovk, E. V., Khasanova, T. V., Andreev, G. N. & Sergeev, G. B. (1997). Supramol. Sci. 4, 487–489.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.